Monatshefte für Chemie Chemical Monthly © Springer-Verlag 1995 Printed in Austria

Prediction of Free Excess Enthalpy and Excess Enthalpy of Nonelectrolyte Mixtures with the Modified TASQUAC Model

B. Schäfer and R. Lacmann*

Institut für Physikalische und Theoretische Chemie der Technischen Universität Carolo-Wilhelmina, D-38092 Braunschweig, Federal Republic of Germany

Summary. Using the known models for liquid mixtures (NRTL, UNIQUAC,...), the excess free enthalpy and the heats of mixing cannot be calculated simultaneously in good agreement with experimental data using only two parameters (or three for NRTL) per temperature and binary system. The excess enthalpy can be estimated only qualitatively but not quantitatively. There is also much doubt about the sign of the predicted H^E data if the absolute value of H^E is small [1]. In this work, we examined the possibilities of modified TASQUAC in simultaneous prediction of VLE and H^E data and the thermodynamic consistency of experimental data.

Keywords. VLE data; Mixing heat; Thermodynamic consistency; Lattice model.

Vorhersage von freier Exzessenthalpie und Exzessenthalpie von Nichtelektrolytmischungen mit Hilfe des modifizierten TASQUAC-Modells

Zusammenfassung. Mit Hilfe der bekannten Modelle für flüssige Mischungen (NRTL, UNIQUAC,...) können die freie Exzeßenthalpie und die Mischungswärme nicht gleichzeitig in guter Übereinstimmung mit experimentellen Daten berechnet werden. Die Exzeßenthalpie kann, ausgehend von Parametern, die aus *VLE*-Daten erhalten wurden, nur qualitativ, nicht quantitativ beschrieben werden. Weiterhin ist das berechnete Vorzeichen der Mischungswärme bei betraglich kleinen Werten der Exzeßenthalpie unsicher [1]. In dieser Arbeit werden die Möglichkeiten des modifizierten TASQUAC-Modells zur simultanen Beschreibung von *VLE*- und H^E -Daten untersucht sowie die thermodynamische Konsistenz der verwendeten Daten überprüft.

Introduction

Modified TASQUAC calculates the excess enthalpies ΔH^E and free excess enthalpies ΔG^E by summarizing the products of the number of hetero-contacts N_{AB} multiplied with the belonging interchange energy ΔW_{AB} (for details, see Refs. [2–6]).

$$\Delta H^{E}_{TASQUAC} = \overline{Z} \cdot N \cdot \sum_{AB} \left[X^{AB} + \sum_{CD} \left(X^{AB}_{CD} \cdot (\eta_{CD} - 1) + \frac{1}{2} \cdot \sum_{EF} X^{AB}_{CD,EF} \cdot (\eta_{CD} - 1) \cdot (\eta_{EF} - 1) \right) \right] \cdot \Delta W_{AB}$$

$$1$$

B. Schäfer and R. Lacmann

$$\begin{split} \Delta G^{E}_{TASQUAC} &= \bar{Z} \cdot N \cdot \sum_{AB} \left[X^{AB} \cdot T \cdot \int_{0}^{1/T} \Delta W_{AB} \cdot \left(\frac{1}{T}\right) \right. \\ &+ \sum_{CD} \left(X^{AB}_{CD} \cdot T \cdot \int_{0}^{1/T} (\eta_{CD} - 1) \cdot \Delta W_{AB} \cdot d\left(\frac{1}{T}\right) \right. \\ &+ \frac{1}{2} \cdot \sum_{EF} X^{AB}_{CD,EF} \cdot T \cdot \int_{0}^{1/T} (\eta_{CD} - 1) \cdot (\eta_{EF} - 1) \cdot \Delta W_{AB} \cdot d\left(\frac{1}{T}\right) \right) \right] 2 \\ &\left. \left(\eta = \exp\left(-\frac{2 \cdot \Delta W}{k \cdot T}\right), \, \bar{Z} = \sum_{L} Z_{L} \cdot x_{L}, \, N = \sum_{L} n_{L} \cdot N_{Avogadro} = n_{tot} \cdot N_{Avogadro} \right) \right] \end{split}$$

For the description of the temperature dependence of the interchange parameter ΔW_{AB} , we used the two parameter form proposed in Ref. [7]:

$$\Delta W/k = a_1 + a_2 \cdot \left(\frac{T_0}{T} - 1\right).$$

 a_1 and a_2 can be obtained by fitting VLE- and H^E data or other thermodynamic properties of binary systems.

Results and Discussion

Based on the mixing heat data sets listed in Tables 2a–9a, one parameter set a_1, a_2 is fitted to every binary system (see Table 1). For that purpose, the function

$$Min = \sum_{I}^{I} \frac{1}{N_{I}} \sqrt{\sum_{I}^{N_{I}} (H_{calc} - H_{exp})^{2}}$$

is minimized by the NAG-routine E04FDF. The quality of the calculated H^E data can be estimated with the help of the relative deviations.

$$\delta H = \sqrt{\frac{1}{N_I} \sum_{i=1}^{N_I} \left(\frac{H_{calc} - H_{exp}}{H_{exp}}\right)^2 \cdot 100}.$$

In a previous paper [6], we have reported about the results of describing VLE data with modified TASQUAC. Table 1 shows a comparison of interchange energy parameters a_1, a_2 obtained from VLE respectively H^E data. In most cases there are considerable differences between the results. Therefore we tried to check the thermodynamic consistency of the data base. The correlation between excess free enthalpy and excess enthalpy is

$$\frac{\partial \frac{G^{E}}{T}}{\partial T} = -\frac{H^{E}}{T^{2}}$$

The calculation of G^E from experimental data was carried out without taking realgas corrections into account [6]. Experimental G^E and H^E data were interpolated with a *Redlich-Kister*-equation $(G^E = x_1 \cdot x_2 [A + B \cdot (x_1 - x_2) + C \cdot (x_1 - x_2)^2 + D \cdot (x_1 - x_2)^3])$ to the molefractions $x_1 = 0.2$, 0.4, 0.6 and 0.8. Starting from $G = H + T \cdot S = H_0 + \int c_p dT + T \cdot S = H_0 + \int (a + b \cdot T + cT^2) dT + T \cdot S$, the temperature dependence of G^E can be expressed as

$$\frac{G^{E}}{T} = \frac{H_{0}}{T} + a + \frac{1}{2} \cdot b \cdot T + \frac{1}{3} \cdot c \cdot T^{2} + S \text{ and } H = -\left(-\frac{H_{0}}{T^{2}} + \frac{1}{2} \cdot b + \frac{2}{3} \cdot c \cdot T\right) \cdot T^{2}.$$

It was found that the H^E data calculated in this way are not in good agreement with experimental data. Only for the system benzene-cyclohexane (see Tables 5a–c) the thermodynamic consisty test yields an acceptable result. The increase (or decrease) of H^E with temperature can be calculated correctly from VLE data but the absolute values are quite different from experimental data. Paul et al, reported that they also could find only a qualitative correlation between their VLE and H^E data [8, 9]. We do not say that there is no consistency between experimental G^E and H^E data (altough we consider the results of the test as a valuable and interesting information) because of two reasons:

- (i) in many cases the number of VLE data is quite small and
- (ii) the temperature range of VLE data is small; therefore we cannot expect to calculate the correct temperature dependence of G^E .

An additional problem is the use of data sets from different authors.

For every isothermal data set there is one optimal interchanging parameter ΔW_{AB} . This parameter can be realized for a known temperature by many different combinations of a_1 and a_2 . Therefore we obtain the picture of a ditch in a 3-dimensional graphic (Figs. 1, 2).

Taking more data sets into account, the absolute minimum results from the point of intersection of these ditches. In many cases these ditches run nearly parallel or in a small angle; there is no sharp minimum for a_1 and a_2 using only few data sets (*VLE* or H^E data only). Because of this reason it seems ingenious to extend the data base for a_1 and a_2 and to fit these parameters simultaneously to *VLE* and H^E data. To combine the deviations in pressure and mixing heat, we minimized the sum of the relative deviations:

$$Min = \sum_{i=1}^{M} \frac{1}{N_i} \sqrt{\sum_{j=1}^{N_i} \left(\frac{\theta_{calc} - \theta_{exp}}{\theta_{exp}}\right)^2} \quad (\theta = P \text{ or } H^E).$$

Fig. 1. Deviation of pressure as a function of a_1 and a_2 ; x-axis: a_1 , y-axis: a_2 , z-axis: mean relative deviation of pressure

Fig. 2. Deviation of H^E as a function of a_1 and a_2 ; x-axis: a_1 , y-axis: a_2 , z-axis: mean relative deviation of mixing heat

Regardless of the number of data-points per set N_i the same weight was attributed to each data set in the optimizing procedure.

We must make some critical remarks of this fit. The dependence of the relative deviations as a function of a_1 and a_2 is not known for all examples. For the system

Component A	Component B	a_1, a_2 from VLE data		a_1, a_2 from H^E data		a_1, a_2 from VLE and H^E data	
		<i>a</i> ₁ [K]	a ₂ [K]	<i>a</i> ₁ [K]	a ₂ [K]	<i>a</i> ₁ [K]	a ₂ [K]
Chloroform	Tetrachloromethane	2.29	0.82	4.29	-73.25	4.30	4.68
Tetrachloromethane	Cyclohexane	1.46	0.17	2.55	2.82	2.49	2.58
Tetrachloromethane	Toluene	12.61	22.60	0.27	1.10	-0.08	-1.74
Benzene	Cyclohexane	14.58	17.47	13.95	17.84	13.68	14.58
Benzene	Aniline	31.58	39.07	14.59	28.50	13.97	10.13
Cyclohexane	Toluene	13.56	17.91	9.21	7.48	8.53	7.91
Cyclohexane	Chlorobenzene	8.54	6.69	11.90	14.54	11.11	13.15
Toluene	Aniline	28.54	31.50	17.63	75.99	16.54	18.34

Table 1. Interchange parameters from different data sources

Table 2a. Results for chloroform/tetrachloromethane mixtures

Literatue	Temp.	a_1, a_2 from					
	[א]	H^E and VLE	data	H^E data			
		Mean [%]	Max [%]	Mean [%]	Max [%]		
[10]	297.85	4.68	11.79	4.00	9.66		
[11]	298.15	4.33	9.92	4.34	10.00		

Literature	Temp.		a_1, a_2 from				
	[K]		H^E and V	H^E and VLE data		VLE data	
			δP	δy	δP	δy	
[12]	298.15] 298.15 Mean	Mean	0.16	0.0037	0.21	0.0037
		Max	0.42	0.0068	0.61	0.0067	
[12]	313.15	Mean	0.76	0.0029.	0.68	0.0029	
		Max	1.32	0.0053	1.23	0.0053	
[13]	318.15	Mean	1.05	0.0024	0.90	0.0026	
		Max	2.03	0.0044	1.81	0.0046	
[12]	328.15	Mean	0.93	0.0036	0.69	0.0038	
		Max	2.23	0.0078	1.49	0.0082	

Table 2b. Results for chloroform/tetrachloromethane mixtures (isothermal data sets)

 Table 2c.
 Results for chloroform/tetrachloromethane mixtures (isobaric data sets)

Literature	Pressure [mmHg]		a_1, a_2 from			
			H^E and VLE data		VLE data	
			δT	δγ	δT	δy
[14]	747.00	Mean	0.10	0.0030	0.08	0.0030
		Max	0.23	0.0064	0.15	0.0069

Table 3a. Results for tetrachloromethane/cyclohexane mixtures

Literature	Temp.		a_1, a_2 from					
	[K]	H ^E and VLE	data	H^E data				
		Mean [%]	Max [%]	Mean [%]	Max [%]			
[15]	283.15	9.52	15.34	12.23	18.42			
[16]	288.15	5.68	7.43	3.31	5.07			
[17]	293.15	4.69	6.81	2.79	4.55			
[18]	293.15	4.13	7.82	2.42	5.58			
[15]	298.15	6.71	8.21	9.01	10.71			
[19]	298.15	6.54	10.08	5.18	8.00			
[16]	298.15	5.24	6.65	3.07	4.49			
[20]	298.15	5.52	6.48	3.71	4.33			
[17]	298.15	6.81	8.10	4.72	5.97			
[21]	298.15	3.29	4.08	1.14	1.87			
[15]	313.15	7.82	10.51	9.86	12.67			
[22]	313.15	7.70	11.84	9.66	14.02			
[18]	313.15	9.57	11.11	7.82	9.38			
[16]	318.15	3.55	4.51	1.81	2.76			
[15]	328.15	7.12	9.33	8.77	11.07			

Literature	Temp.		a_1, a_2 from				
	ĹĸĴ		H^E and V	'LE data	VLE data		
			δP	δy	δP	δy	
[23]	283.15	Mean	1.12	0.0141	1.11	0.0142	
		Max	2.02	0.0241	1.99	0.0240	
[24]	313.15	Mean	1.97	0.0026	1.03	0.0025	
		Max	3.61	0.0034	3.07	0.0051	
[23]	333.15	Mean	2.55	0.0017	1.24	0.0029	
		Max	5.38	0.0075	4.26	0.0096	
[25]	343.15	Mean	2.43	0.0010	1.93	0.0027	
		Max	4.66	0.0022	3.72	0.0046	
[24]	343.15	Mean	2.32	0.0007	1.91	0.0021	
		Max	4.37	0.0026	2.39	0.0035	

Table 3b. Results for tetrachloromethane/cyclohexane mixtures (isothermal data sets)

Table 3c. Results for tetrachloromethane/cyclohexane mixtures (isobaric data sets)

Literature	Pressure [mmHg]		a_1, a_2 from				
			H^E and VLE data		VLE data		
			δT	δy	δT	δy	
	760.00	Mean	0.30	0.0008	0.13	0.0022	
		Max	0.48	0.0025	0.26	0.0038	
[27]	760.00	Mean	0.09	0.0032	0.24	0.0049	
		Max	0.17	0.0100	0.39	0.0134	
[28]	760.00	Mean	0.32	0.0059	0.13	0.0060	
		Max	0.46	0.0143	0.29	0.0172	

Table 4. Results for tetrachloromethane/toluene mixtures (isothermal data sets)

Literature	Temp.		a_1, a_2 from				
	[K]		H^E and VL	'LE data	LE data VLE data		
			δP	δy	δP	δy	
[29]	308.15	Mean	0.74	0.0025	0.82	0.0030	
		Max	1.96	0.0047	1.87	0.0063	
[29]	313.15	Mean	1.35	0.0020	1.32	0.0016	
		Max	3.69	0.0047	3.73	0.0033	
[29]	318.15	Mean	1.05	0.0024	0.54	0.0009	
		Max	1.80	0.0063	1.23	0.0023	
[29]	328.15	Mean	2.36	0.0032	0.62	0.0010	
		Max	3.63	0.0077	2.50	0.0022	
[29]	338.15	Mean	4.99	0.0040	0.48	0.0025	
		Max	7.31	0.0111	1.43	0.0044	

Literatue	Temp.		a_1, a_2 from					
	[K]	H^E and VLE	data	H^E data				
		Mean [%]	Max [%]	Mean [%]	Max [%]			
[30]	280.15	5.26	10.25	4.30	7.35			
[20]	288.15	7.05	13.21	4.84	10.92			
[31]	293.15	4.08	6.43	2.78	4.30			
[32]	293.15	14.54	35.64	16.20	38.76			
[20]	298.15	3.66	5.62	4.70	7.63			
[33]	298.15	5.92	11.86	5.41	10.14			
[34]	298.15	5.32	9.78	4.05	8.03			
[35]	298.15	6.50	10.19	5.22	8.45			
[36]	298.15	5.76	10.31	4.83	8.57			
[37]	298.15	4.24	9.53	3.67	7.78			
[38]	298.15	5.93	11.93	5.13	10.21			
[39]	298.15	6.22	11.56	5.02	9.85			
[40]	298.15	5.49	10.79	4.08	9.07			
[41]	298.15	6.65	15.14	5.36	13.49			
[42]	298.15	8.57	18.17	7.36	16.58			
[43]	298.15	3.47	6.47	3.58	8.52			
[30]	298.15	5.05	11.65	4.10	9.93			
[30]	298.15	6.64	12.15	5.76	10.44			
[44]	303.15	7.04	16.03	6.18	14.70			
[45]	303.15	8.48	13.12	7.62	11.74			
[20]	308.15	10.75	11.32	12.08	12.66			
[46]	308.15	9.47	15.17	9.72	16.57			
[47]	308.15	17.95	20.23	16.96	19.26			
[46]	313.15	20.76	42.58	21.24	43.80			
[48]	313.15	3.89	6.26	3.69	7.16			
[46]	318.15	15.43	28.89	15.67	29.53			
[37]	323.15	3.33	7.95	3.26	7.83			
[49]	323.15	5.90	10.95	5.86	10.83			
[50]	323.15	4.19	8.40	4.14	8.29			
[30]	323.15	5.42	9.65	5.38	9.53			
[48]	328.15	5.18	9.10	5.18	9.31			
[46]	331.55	10.10	17.65	10.37	18.05			
[30]	348.15	5.26	7.94	5.57	9.30			
[58]	363.15	17.93	37.03	15.24	33.16			
[30]	373.15	5.24	8 50	6.04	10.95			
[30]	393.15	5.98	11.37	6.28	10.66			

Table 5a. Results for benezene/cyclohexane mixtures

shown in Figs. 1 and 2 (benzene/cyclohexane), the relative deviations are of the same magnitude, but this is not necessarily the case. Nevertheless, the description of VLE (Tables 2b–9b, 2c–9c) and mixing heat data (Tables 2a–9a) succeeds with relative small deviations; therefore we can justify this fit.

Literature	Temp.			a_1, a_2	2 from	
	[K]		H^E and V	<i>LE</i> data	VLE data	
			δP	δy	δP	δy
[52]	281.15	Mean	0.28	0.0044	0.14	0.0025
		Max	0.62	0.0086	0.29	0.0056
[53]	283.15	Mean	0.48	0.0053	0.23	0.0038
		Max	0.93	0.0100	0.40	0.0068
[52]	287.15	Mean	0.41	0.0044	0.18	0.0025
		Max	0.92	0.0086	0.32	0.0056
[52]	293.15	Mean	0.58	0.0044	0.24	0.0023
		Max	1.27	0.0082	0.39	0.0053
[54]	298.06	Mean	1.16	0.0051	0.27	0.0036
		Max	1.51	0.0085	0.58	0.0054
[55]	298.15	Mean	2.01	0.0092	0.95	0.0055
		Max	2.73	0.0141	1.51	0.0089
[54]	313.10	Mean	2.21	0.0059	0.55	0.0039
L* 'J		Max	3.22	0.0085	1.03	0.0056
[24]	313.14	Mean	2.32	0.0074	0.56	0.0040
[2.]		Max	3.20	0.0132	1.05	0.0091
[56]	313.14	Mean	2.30	0.0074	0.55	0.0040
[30]	0.000	Max	3.15	0.0132	1.06	0.0091
E571	313.15	Mean	2.50	0.0078	0.61	0.0048
	010110	Max	3.49	0.0142	1.22	0.0100
E587	313.15	Mean	2.46	0.0043	0.45	0.0030
[20]	010110	Max	2.86	0.0077	0.89	0.0049
F 597	31315	Mean	3.24	0.0034	0.97	0.0037
	010110	Max	4.08	0.0082	1.65	0.0064
[60]	31315	Mean	1.98	0.0056	0.62	0.0025
[00]	515.10	Max	3.28	0.0087	0.95	0.0079
F617	318.15	Mean	1.68	0.0058	1.18	0.0028
[01]	DIGINO	Max	3.32	0.0106	3.08	0.0053
[61]	328.15	Mean	2.27	0.0054	2.34	0.0036
	020110	Max	3.87	0.0097	4.00	0.0067
[54]	328 20	Mean	3.93	0.0053	1.64	0.0031
	020020	Max	11.46	0.0077	7.85	0.0045
[53]	333.15	Mean	4.20	0.0055	1.16	0.0024
[22]	000110	Max	5.99	0.0088	2.20	0.0049
F247	343 13	Mean	6.16	0.0063	1.44	0.0031
[]	DIDIXO	Max	8.49	0.0110	2.60	0.0078
[62]	343.15	Mean	11.09	0.0021	4.03	0.0056
L~#]	2.2110	Max	12.25	0.0044	7.06	0.0099
[63]	343.15	Mean	12.38	0.0083	5.32	0.0116
L~~J		Max	14.41	0.0199	7.96	0.0224
[64]	343.15	Mean	6.01	0.0066	1.35	0.0037
L≁ ,]	2.2.10	Max	8.80	0.0118	3.48	0.0128

Table 5b. Results for benzene/cyclohexane mixtures (isothermal data sets)

.

Prediction of Free Excess Enthalpy

Literature	Pressure		a_1, a_2 from				
	լոությ		H^E and VLE data		VLE data	L	
			δT	δy	δT	δy	
[65]	760.00	Mean	0.46	0.0048	0.06	0.0026	
		Max	0.57	0.0097	0.17	0.0064	
[66]	760.00	Mean	0.22	0.0037	0.26	0.0021	
L- J		Max	0.29	0.0097	0.33	0.0051	
[67]	760.00	Mean	0.35	0.0053	0.08	0.0017	
		Max	0.50	0.0077	0.19	0.0040	
[68]	760.00	Mean	0.39	0.0061	0.09	0.0028	
		Max	0.53	0.0100	0.23	0.0050	
[69]	760.00	Mean	0.28	0.0044	0.13	0.0026	
		Max	0.38	0.0089	0.25	0.0056	
[70]	760.00	Mean	0.39	0.0061	0.09	0.0029	
		Max	0.53	0.0100	0.23	0.0050	
[71]	760.00	Mean	0.53	0.0064	0.12	0.0029	
		Max	0.74	0.0092	0.36	0.0059	

Table 5c. Results for benzene/cyclohexane mixtures (isobaric data sets)

Table 6a.	Results for	benzene/aniline	mixtures

Literatue	Temp.		a_1, a_2 from					
	ĹĸŢ	H^E and VLE	data	H ^E data				
		Mean [%]	Max [%]	Mean [%]	Max [%]			
[72]	293.15	25.60	32.51	21.95	28.08			
[73]	298.15	10.76	17.97	14.59	23.14			
[74]	298.15	11.35	14.90	10.90	19.30			
[75]	303.15	9.54	22.93	9.11	21.19			
[74]	308.15	21.38	49.29	21.46	49.51			

 Table 6b. Results for benzene/aniline mixtures (isothermal data sets)

Literature	Temp.		a_1, a_2 from				
	[K]		H^E and VLE data		VLE data		
			δP	δy	δP	δy	
[76]	298.15	Mean	0.82		2.40		
		Max	2.89		6.81		
[76]	308.15	Mean	2.44		1.59		
		Max	7.21		7.84		

(Continued)

Literature	Temp.			a_1, a_2	, from	
	[K]		H^E and VLE data		VLE data	
			δP	δy	δΡ	δy
[76]	318.15	Mean	3.17		2.51	
		Max	6.03		9.37	
[77]	323.15	Mean	2.32	0.0003	0.45	0.0001
		Max	5.24	0.0005	1.29	0.0004
[78]	343.15	Mean	6.57	0.0018	10.78	0.0023
		Max	17.53	0.0071	25.99	0.0098
[77]	343.15	Mean	5.72	0.0008	1.30	0.0003
		Max	11.06	0.0034	3.21	0.0011
[77]	363.13	Mean	7.47	0.0009	1.85	0.0012
		Max	9.08	0.0016	3.08	0.0019
[79]	392.45	Mean	16.01	0.0026	13.09	0.0024
		Max	25.53	0.0067	21.10	0.0059

Table 6b. (Continued)

Table 6c. Results for benzene/aniline mixtures (isobaric data sets)

Literature	Pressure [mmHg]		a_1, a_2 from			
			H^E and VLE data		VLE data	
			δT	δγ	δT	δy
Г801	760.00	Mean	1.18	0.0080	1.09	0.0100
		Max	5.62	0.0782	5.69	0.0810
[81]	760.00	Mean	1.28	0.0219	0.61	0.0168
		Max	4.34	0.0713	2.73	0.561

Table 7a.	Results fo	or cyclo	hexane/	toluene	mixtures
-----------	------------	----------	---------	---------	----------

Literatue	Temp.		a_1, a_2 from					
	[K]	H^E and VLE	data	H ^E data				
		Mean [%]	Max [%]	Mean [%]	Max [%]			
[82]	293.15	10.62	16.47	4.78	10.06			
[83]	298.15	13.87	19.97	9.06	13.67			
[84]	298.15	55.31	69.38	67.47	82.70			
[36]	298.15	15.54	22.88	9.96	16.78			
[85]	298.15	13.56	19.06	7.77	12.65			
[44]	303.15	13.61	21.45	7.98	15.05			

Literature	Temp. ГКЛ		a_1, a_2 from			
			H^E and VLE data		VLE data	
			δP	δy	δP	δy
[86]	293.15	Mean	0.23		0.20	
		Max	0.55		0.44	
[87]	298.15	Mean	0.69	0.0027	0.69	0.0028
		Max	1.83	0.0151	1.83	0.0150
[86]	298.15	Mean	0.25		0.24	
		Max	0.57		0.55	
[86]	303.15	Mean	0.28		0.27	
		Max	0.62		0.67	
[86]	308.15	Mean	0.38		0.38	
		Max	0.65		0.89	
[86]	313.15	Mean	0.60		0.63	
		Max	1.11		1.43	
[88]	323.15	Mean	2.41	0.0102	1.49	0.0076
		Max	4.51	0.0274	3.00	0.0213

 Table 7b. Results for cyclohexane/toluene mixtures (isothermal data sets)

Table 7c. Results for cyclohexane/toluene mixtures (isobaric data sets)

Literature	Pressure [mmHg]		a_1, a_2 from				
			H^E and VLE data		VLE data	1	
			δT	δy	δT	δy	
[89]	200.00	Mean	0.29	0.0090	0.31	0.0064	
		Max	0.49	0.0281	0.63	0.0193	
[89]	300.00	Mean	0.24	0.0095	0.18	0.0066	
		Max	0.65	0.0330	0.46	0.0228	
[90]	760.00	Mean	0.67	0.0074	0.14	0.0025	
		Max	1.03	0.0149	0.30	0.0088	
[91]	760.00	Mean	0.52	0.0107	0.13	0.0063	
		Max	0.84	0.0202	0.31	0.0116	
[65]	760.00	Mean	0.48	0.0085	0.12	0.0042	
		Max	0.86	0.0222	0.26	0.0087	
[92]	760.00	Mean	0.39	0.0063	0.13	0.0035	
		Max	0.87	0.0190	0.24	0.0057	

Literature	Temp.		a_1, a_2 from					
	[K]	H^{E} and VLE	data	H^E data	H^E data			
		Mean [%]	Max [%]	Mean [%]	Max [%]			
[93]	293.15	16.65	26.71	21.29	35.76			
[72]	293.15	18.64	23.10	15.17	20.63			
[83]	298.15	10.40	17.85	14.35	26.16			
[94]	298.15	10.78	18.57	12.37	22.93			
[95]	303.15	24.34	26.16	19.13	21.01			
[96]	308.65	14.57	33.14	19.41	42.36			
[95]	313.15	22.93	29.30	18.16	24.47			
[96]	318.15	16.16	34.88	20.93	44.04			
[96]	328.15	24.14	59.29	29.24	69.91			

Tabla Sa	Deculte for	evelobavana	(chlorobe	nzena mivturec
I abic oa.	Results for	Cyclonexane	/ cmorooc	mzene miatures

Table 8b. Results for cyclohexane/chlorobenzene mixtures (isothermal data sets)

Literature	Temp. [K]		a_1, a_2 from			
			H^E and V	LE data	VLE data	l
			δP	δy	δP	δy
[97]	348.15	Mean	10.35	0.0072	2.82	0.0051
		Max	14.80	0.0192	5.46	0.0102

Table 8c. Results for cyclohexane/chlorobenzene mixtures (isobaric data sets)

Literature	Pressure [mmHg]		a_1, a_2 from			
			H^E and VLE data		VLE data	
			δT	δy	δT	δy
[98]	760.00	Mean Max	1.05 10.62	0.0089 0.0193	1.07 9.27	0.0128 0.0265

Table 9a. Results for toluene/aniline mixtures

Literature	Temp. [K]	a_1, a_2 from					
		H^E and VLE	data	H^E data			
		Mean [%]	Max [%]	Mean [%]	Max [%]		
[99]	298.15	10.91	17.59	11.02	21.30		
[99]	308.65	14.39	28.89	11.95	22.68		

Literature	Temp. [K]		a_1, a_2 from			
			H^E and VLE data		VLE data	
			δP	δy	δP	δy
[100]	313.15	Mean	4.64		1.21	
		Max	7.91		3.90	
[101]	353.15	Mean	12.27	0.0108	1.11	0.0013
		Max	19.76	0.0468	2.91	0.0061
[101]	363.15	Mean	16.33	0.0125	1.32	0.0019
		Max	26.97	0.0478	2.49	0.0086
[101]	373.17	Mean	20.45	0.0128	2.29	0.0037
		Max	36.08	0.0431	3.73	0.0124

Table 9b. Results for toluene/aniline mixtures (isothermal data sets)

Conclusions

The prediction of H^E data with interchange parameters a_1 and a_2 fitted to VLE data and vice versa does not lead to acceptable results in general. Using the simultaneously fitted parameters, the results are quite satisfactory or even good. It is known from literature [8, 9] that VLE and H^E data are not consistent in many cases. Therefore, there is no expectation that a prediction of thermodynamic properties succeeds in good agreement with experimental results with only one parameters set. One important prerequisite to reach this aim in the improvement of the experimental data base. For the moment, TASQUAC (and we think the other models too) can be used only as a tool for testing the thermodynamic consistency of different kind of thermodynamic data but not for the prediction of all interesting thermodynamic properties with only one parameter set.

Symbols. G^E : excess free enthalpy; H^E : excess enthalpy; M: number of data sets; N: total number of molecules; $N_{Avogadro}$: Avogadro-number; N_I : number of data points; N_{AB} : number of contact pairs between molecules of component A and B; P: pressure; T: temperature; ΔW : interchange energy; X: concentration function; Y: concentration function; Z_K : coordination number; \overline{Z} : mean coordination number; a_1, a_2 : interchange parameter; c_p : heat-capacity; k: Boltzmann constant; n_K : number of moles of component K; n_{tot} : total number of moles; x: liquid phase mole fraction; y: vapor phase mole fraction; δ : deviation.

Acknowledgements

Thanks are due to the "Buchner-Stiftung", the "Fonds der chemischen Industrie", and the "Volkswagen-Stiftung" for financial support of this work.

References

- [1] Fredenslund A., Gmehling J., Rasmussen P. (1977) Vapour-liquid equilibria using UNIFAC. Elsevier, Amsterdam
- [2] Mickeleit M., Lacmann R. (1983) Fluid Phase Equil. 12: 201

- [3] Kuhlmann O., Lacmann R., Mickeleit M. (1986) Fluid Phase Equil. 27: 437
- [4] Brennecke D., Lacmann R. (1988) Fluid Phase Equil. 43: 57
- [5] Brennecke D. (1989) Thesis, Braunschweig
- [6] Brennecke D., Schäfer B., Lacmann R. (1992) Fluid Phase Equil. 73: 57
- [7] Kehiaian H. V., Grolier J. P., Benson G. C. (1978) J. Chim. Phys. No.11 12: 44
- [8] Paul H.-J., Krug J., Knapp H., Gutsche B. (1986) J. Eng. Chem. Data 31: 448
- [9] Paul H.-J., Krug J., Knapp H. (1988) Fluid Phase Equil. 39: 307
- [10] Cheesman G. H., Whitaker A. M. B. (1952) Proc. Roy. Soc. London A212: 406
- [11] Hirobe H. (1926) J. Fac. Sci., Imp. Univ. Tokyo 1: 155
- [12] McGlashan M. L., Pure J. E., Sainsbury I. E. J. (1954) Trans. Faraday Soc. 50: 1284
- [13] Rulewicz G., Schuberth H., Leibnitz E. (1968) J. Prakt. Chem. 37: 122
- [14] Krauze R., Serwinski M. (1973) system. Zesz. Nauk. Politech. Lodz., Chem. Spozyw. 24: 53
- [15] Adcock D. S., McGlashan M. L. (1954) Proc. Royal Soc. London A226: 266
- [16] Ewing M. B., Marsh K. N. (1970) J. Chem. Thermodyn. 2: 351
- [17] Harsted B. S., Thomsen E. S. (1974) J. Chem. Thermodyn. 6: 549
- [18] Kehlen H., Sackmann H. (1966) Z. Phys. Chem. (Frankfurt am Main) 50: 135
- [19] Arora P. S., Phutela R. C., Singh P. P. (1974) Thermochim. Acta 10: 47
- [20] Goates J. R., Sullivan R. J., Ott J. B. (1959) J. Phys. Chem. 63: 589
- [21] Heintz A., Lichtenthaler R. N. (1980) Ber. Bunsenges. Phys. Chem. 84: 727
- [22] Bhattacharya S. N., Das S. K. (1959) Indian J. Phys. 33: 46
- [23] Dvorak K., Boublik T. (1963) Collect. Czech. Chem. Commun. 28: 1249
- [24] Scatchard G., Wood S. E., Mochel J. M. (1939) J. Am. Chem. Soc. 61: 3206
- [25] Brown I., Ewald A. H. (1950) Austr. J. Sci. Res. A3: 306
- [26] Rodger A. J., Hsu C. C., Furter W. F. (1969) J. Chem. Eng. Data 14: 362
- [27] Ocon Garcia J., Tojo Barreiro G., Espada L. (1969) An. Quim. 65: 633
- [28] Yuan K. S., Lu B. C. Y., Ho J. C. K., Keshpande A. K. (1963) J. Chem. Eng. Data 8: 549
- [29] Wang J. L. H., Boubilkova L., Lu B. C. Y. (1970) J. Appl. Chem. 20: 172
- [30] Eliott K., Wormald C. J. (1976) J. Chem. Thermodyn. 8: 881
- [31] Grosse-Wortmann H., Jost W., Wagner H. G. G. (1966) Z. Phys. Chem. (Frankfurt am Main) 49: 74
- [32] Brown C. P., Mathieson A. R., Thynne J. C. J. (1955) J. Chem. Soc. (London) 4141
- [33] Gracia M. (1977) J. Chem. Thermodyn. 9: 55
- [34] Grolier J. P. E. (1976) Thermochim. Acta 16: 27
- [35] Hill R. J., Swinton F. L. (1980) J. Chim. Thermodyn. 12: 489
- [35] Hsu K.-Y., Clever H. L. (1975) J. Chem. Thermodyn. 7: 435
- [37] Lundberg G. W. (1964) J. Chem. Eng. Data 9: 193
- [38] Marsh K. N. (1973) Int. Data Series, Sel. Data Mixtures Ser. A. 23
- [39] Abello L. (1973) J. Chim. Phys.-Phys. Chim. Biol. 70: 1355
- [40] Cabani S., Ceccanti N. (1973) J. Chem. Thermodyn. 5:9
- [41] Coca Prados J. (1957-1968) Pub. 1969. Acta Salmanticensia, Cienc. 33: 7
- [42] Coomber B. A., Wormald C. J. (1976) J. Chem. Thermodyn. 8: 793
- [43] Diaz Pena M., Fernandez Martin F. (1963) An. Real. Soc. Espan. de Fis. y. Quim. B59: 323
- [44] Karvo M. (1980) J. Chem. Thermodyn. 12: 635
- [45] Murakami T., Murakami S., Fujishiro R. (1969) Bull. Chem. Soc. Jpn. 42: 35
- [46] Paz-Andrade M. I., Ocon J., Casanova J. (1965) An Real. Soc. Espan. de Fis. y Quim. 61: 707
- [47] Ratnam A. V., Rao C. V., Murti P. S. (1962) Chem. Eng. Sci. 17: 392
- [48] Sabinin V. E., Belousov V. P., Morachevsky A. G. (1966) Izv. Vyssh. Ucheb. Zaved., Khim. Khim. Tekhnol. 9: 382
- [49] Savini C. G., Winterhalter D. R., Kovach L. H., van Ness H. C. (1966) J. Chem. Eng. Data 11:40
- [50] Vesely F., Hynek V., Svoboda V., Holub R. (1974) Collect. Czech. Chem. Commun. 39: 355
- [51] Nicholson D. E. (1961) J. Chem. Eng. Data. 6: 5
- [52] Aim K. (1978) Fluid Phase Equil. 2: 119

- [53] Boublik T. (1963) Collect. Czech. Chem. Commun. 28: 1771.
- [54] Mentzer R. A., Greenkorn R. A., Chao K. C. (1982) J. Chem. Thermodyn. 14: 817
- [55] Tasic A., Djordjevic B., Groczdanic D., Afgan N., Malic D. (1978) Chem. Eng. Sci. 33: 189
- [56] Friend J., Scheller W. A., Weber J. H. (1970) Ind. Eng. Chem. Proc. Des. Dev. 9: 144
- [57] Inoue M., Azumi K., Suzuki N. (1975) Ind. Eng. Chem. Fundam. 14: 312
- [58] Young K. L., Mentzer R. A., Greenkorn R. A., Chao K. C. (1977) J. Chem. Thermodyn. 9: 979
- [59] Osborne C. G., Morcom K. W. (1981) J. Chem. Thermodyn. 13: 235
- [60] Kimura T., Takagi S. (1978) Netsu Sokutei 5: 95
- [61] Madhavan S., Murti P. S. (1966) Chem. Eng. Sci. 21: 465
- [62] Susarev M. P., Chen S. T. (1963) Zh. Fiz. Khim. 37: 1739
- [63] Susarev M. P., Martynova N. S., Efimova G. A. (1977) Zh. Prikl. Khim. 50: 1823
- [64] Diaz Pena M., Rodriguez Cheda D. (1970) An. Quim. 66: 721
- [65] Sieg L. (1950) Chem. Ing. Tech. 22: 322
- [66] Donald M. B., Ridgway K. (1958) J. Appl. Chem. 8: 403
- [67] Chao K. C. (1956) Thesis, Wisconsin
- [68] Butler P. A., Ridgway K. (1967) J. Appl. Chem. 17: 191
- [69] Nagata I. (1962) J. Chem. Eng. Data 7: 461
- [70] Ridgway K., Butler P. A. (1967) J. Chem. Eng. Data 12: 509
- [71] Nataraj V., Rao M. R. (1967) Indian J. Technol. 5: 512
- [72] Merkel K. (1940) Nova Acta Leopoldina 9: 243
- [73] Deshpande D. D., Pandya M. V. (1965) Trans. Faraday Soc. 61: 1858
- [74] Nigam R. K., Singh P. P., Singh K. C. (1979) Can. J. Chem. 57: 2211
- [75] Velasco I., Otin S., Gutierrez Losa C. (1969) Int. Data Series, Sel. Data Mixtures Ser. A, 8
- [76] Deshpande D. D., Pandya M. V. (1967) Trans. Faraday Soc. 63: 2149
- [77] Hosseini S. M., Schneider G. (1963) Z. Phys. Chem. 36: 137
- [78] Martin A. R., Collie B. (1932) J. Chem. Soc. 2658
- [79] Kortuem G., Freier H. J. (1954) Monatsh. 85: 693
- [80] Kortuem G., Moegling D., Woerner F. (1950) Chem. Ing. Tech. 22: 453
- [81] Kortuem G., Freier H. J., Woerner F. (1953) Chem. Ing. Tech. 25: 125
- [82] Mathieson A. R., Thynne J. C. J. (1956) J. Chem. Soc. (London) 3708
- [83] Amaya K. (1961) Bull. Chem. Soc. Jpn. 34: 1271.
- [84] Baluja Santos M. C. D. (1970) Acta Cient. Compostelana. 7: 3
- [85] Watson A. E. P., McLure I. A., Bennett J. E., Benson G. C. (1965) J. Phys. Chem. 69: 2753
- [86] Anisimova Z. K., Konakbaeva E. G., Shakparonov M. I. (1973) Teplofiz. Svojstva Vescesty I Materialov 7: 167
- [87] Katayama T., Sung E. K., Lightfoot E. N. (1965) AIchE J. 11: 924
- [88] Zharov V. T., Morachevsky A. G., Shapil L. G., Buevich T. A. (1968) Zh. Prikl. Khim. 41: 2443
- [89] Riveng F. (1969) Bull. Soc. Chim. Fr. 9: 3034
- [90] Delzenne A. (1961) Bull. Soc. Chim. France 295
- [91] Myers H. S. (1956) Ind. Eng. Chem. 48: 1104
- [92] Black C. (1959) Ind. Eng. Chem. 51: 211
- [93] Harsted B. S., Thomsen E. S. (1975) J. Chem. Thermodyn. 7: 369
- [94] Tanaka R., Murakami S., Fujishiro R. (1974) J. Chem. Thermodyn. 6: 209
- [95] Anantaraman A. V., Bhattacharya S. N., Palit S. R. (1963) Trans. Faraday Soc. 59: 1101
- [96] Anantaraman A. V., Bhattacharya S. N., Palit S. R. (1961) Trans. Faraday Soc. 57: 40
- [97] Diaz Pena M., Compostizo A., Crespo Colin A., Escudero I. (1980) J. Chem. Thermodyn. 12: 1051
- [98] Rao M. N., Subbarao B. V. (1976) Indian J. Technol. 14: 159
- [99] Nigam R. K., Singh P. P., Singh K. C. (1980) Thermochim. Acta 35: 1
- [100] Heinrich J. (1975) Collect. Czech. Chem. Commun. 40: 787
- [101] Schneider G. (1960) Z. Phys. Chem. 24: 165

Received February 14, 1994. Accepted March 28, 1994